15 research outputs found

    Accelerating ant colony optimization by using local search

    Get PDF
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2015.Cataloged from PDF version of thesis report.Includes bibliographical references (page 42-45).Optimization is very important fact in terms of taking decision in mathematics, statistics, computer science and real life problem solving or decision making application. Many different optimization techniques have been developed for solving such functional problem. In order to solving various problem computer Science introduce evolutionary optimization algorithm and their hybrid. In recent years, test functions are using to validate new optimization algorithms and to compare the performance with other existing algorithm. There are many Single Object Optimization algorithm proposed earlier. For example: ACO, PSO, ABC. ACO is a popular optimization technique for solving hard combination mathematical optimization problem. In this paper, we run ACO upon five benchmark function and modified the parameter of ACO in order to perform SBX crossover and polynomial mutation. The proposed algorithm SBXACO is tested upon some benchmark function under both static and dynamic to evaluate performances. We choose wide range of benchmark function and compare results with existing DE and its hybrid DEahcSPX from other literature are also presented here.Nabila TabassumMaruful HaqueB. Computer Science and Engineerin

    A draft physical map of a D-genome cotton species (Gossypium raimondii)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetically anchored physical maps of large eukaryotic genomes have proven useful both for their intrinsic merit and as an adjunct to genome sequencing. Cultivated tetraploid cottons, <it>Gossypium hirsutum </it>and <it>G. barbadense</it>, share a common ancestor formed by a merger of the A and D genomes about 1-2 million years ago. Toward the long-term goal of characterizing the spectrum of diversity among cotton genomes, the worldwide cotton community has prioritized the D genome progenitor <it>Gossypium raimondii </it>for complete sequencing.</p> <p>Results</p> <p>A whole genome physical map of <it>G. raimondii</it>, the putative D genome ancestral species of tetraploid cottons was assembled, integrating genetically-anchored overgo hybridization probes, agarose based fingerprints and 'high information content fingerprinting' (HICF). A total of 13,662 BAC-end sequences and 2,828 DNA probes were used in genetically anchoring 1585 contigs to a cotton consensus genetic map, and 370 and 438 contigs, respectively to <it>Arabidopsis thaliana </it>(AT) and <it>Vitis vinifera </it>(VV) whole genome sequences.</p> <p>Conclusion</p> <p>Several lines of evidence suggest that the <it>G. raimondii </it>genome is comprised of two qualitatively different components. Much of the gene rich component is aligned to the <it>Arabidopsis </it>and <it>Vitis vinifera </it>genomes and shows promise for utilizing translational genomic approaches in understanding this important genome and its resident genes. The integrated genetic-physical map is of value both in assembling and validating a planned reference sequence.</p

    COVID-19 VACCINATION HESITANT AND PREDICTOR OF THE VACCINATION ACCEPTANCE IN PUNJAB

    No full text
    The present study aimed to explore the hesitancy level of respondents about COVID-19 vaccination. The study used a stratified random sampling technique and selected two hundred and thirty-two respondents as true representatives of the population. The study explored four types of COVID-19 vaccination hesitant i.e. theoretical, mythical, structural and bio-religious. It was also found that type of occupation and the biological condition of women are significant predictors of the vaccination acceptance. The study suggests to introduce some measures to reduce the prevalent misinformation about the vaccination among the masses by using social and print media as well some traditional methods, especially in rural area

    Policy research institutions and the health SDGs : building momentum in South Asia - Pakistan country study

    No full text
    Taking into account health related Sustainable Development Goals (SDG) for Pakistan, efforts are required beyond providing medical services. A multi-sectoral approach necessitates the inclusion of wider social services. Sustainable Development Policy Institute (SDPI) along with other collaborating organizations is working to map and contextualize stakeholder roles, their relations, and as well, the extent of their involvement in SDG implementation and monitoring. This analysis aims to facilitate better understanding of the existing institutional framework and what needs to be created for accelerating progress towards health related SDGs

    Xanthine Oxidase Inhibitor, Allopurinol, Prevented Oxidative Stress, Fibrosis, and Myocardial Damage in Isoproterenol Induced Aged Rats

    No full text
    We evaluated the preventive effect of allopurinol on isoproterenol (ISO) induced myocardial infarction in aged rats. Twelve- to fourteen-month-old male Long Evans rats were divided into three groups: control, ISO, and ISO + allopurinol. At the end of the study, all rats were sacrificed for blood and organ sample collection to evaluate biochemical parameters and oxidative stress markers analyses. Histopathological examinations were also conducted to assess inflammatory cell infiltration and fibrosis in heart and kidneys. Our investigation revealed that the levels of oxidative stress markers were significantly increased while the level of cellular antioxidants, catalase activity, and glutathione concentration in ISO induced rats decreased. Treatment with allopurinol to ISO induced rats prevented the elevated activities of AST, ALT, and ALP enzymes, and the levels of lipid peroxidation products and increased reduced glutathione concentration. ISO induced rats also showed massive inflammatory cells infiltration and fibrosis in heart and kidneys. Furthermore, allopurinol treatment prevented the inflammatory cells infiltration and fibrosis in ISO induced rats. In conclusion, the results of our study suggest that allopurinol treatment is capable of protecting heart of ISO induced myocardial infarction in rats probably by preventing oxidative stress, inflammation, and fibrosis

    Supplementation of Citrus maxima Peel Powder Prevented Oxidative Stress, Fibrosis, and Hepatic Damage in Carbon Tetrachloride (CCl4) Treated Rats

    No full text
    Citrus maxima peel is rich in natural phenolic compounds and has a long use in the traditional medicine. HPLC-DAD analysis on Citrus maxima peel powder exhibited the presence of various phenolic compounds such as caffeic acid and (−)-epicatechin. To determine the plausible hepatoprotective activity of Citrus maxima peel powder, we used carbon tetrachloride (CCl4) treated rat model. Liver damage in rats was confirmed by measuring the AST, ALT, and ALP enzyme activities. In addition, lipid peroxidation products (MDA), nitric oxide, advanced protein oxidation products level (APOP), and catalase activities were also analyzed along with the histological profiling for the inflammatory cell infiltration, collagen, and iron deposition in liver. Dietary supplementation of Citrus maxima peel powder exhibited significant reduction of serum AST, ALT, and ALP activities in carbon tetrachloride treated rats. Moreover, Citrus maxima peel powder also showed a significant reduction of the oxidative stress markers (MDA, NO, and APOP level) and restored the catalase activity in CCl4 treated rats. Histological examination of the liver section revealed reduced inflammatory cells infiltration, collagen, and iron deposition in CCl4 treated rats. The results from this study demonstrated that Citrus maxima peel powder produced significant hepatoprotective action in CCl4 administered rats

    Caffeic acid rich Citrus macroptera peel powder supplementation prevented oxidative stress, fibrosis and hepatic damage in CCl4 treated rats

    No full text
    Abstract Background Citrus macroptera has been used as a culinary fruit and medicinal plant in traditional medicine system in Bangladesh. The aim of the present study was to evaluate the presence of phenolic compounds in Citrus macroptera peel powder and the protective effect of Citrus macroptera against carbon tetrachloride (CCl4)-induced liver injury in rats. Methods The hepatoprotective activity was assessed using various biochemical parameters such as liver marker enzymes (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP)) and oxidative stress parameters. Histopathological changes in the liver of different groups were also studied. Results Administration of CCl4 increased the serum ALT, AST, ALP enzymatic activities and lipid peroxidation products but decreased the cellular antioxidant activities and reduced glutathione (GSH) levels in rats which were brought back to near normal levels by the treatment with Citrus macroptera. Citrus macroptera administration has also shown to decrease the necrotic zones, fibrosis and inflammatory cell infiltration in CCl4 treated rats. HPLC-DAD analysis of Citrus macroptera extract showed the great presence of caffeic acid and (−) epicatechin. Conclusion The results of this study suggest that Citrus macroptera exerts hepatoprotective activity via promoting the antioxidant defense against CCl4-induced oxidative liver damage

    Identification of potent inhibitors against transmembrane serine protease 2 for developing therapeutics against SARS-CoV-2

    No full text
    In viral binding and entry, the Spike(S) protein of SARS-CoV-2 uses transmembrane serine protease 2 (TMPRSS2) for priming to cleavage themselves. In this study, we have screened \u27drug-like\u27 7476 ligands and found that over thirty ligands can effectively inhibit the TMPRSS-2 better than the control ligand. Finally, the three best drug agents L1, L2, and L6 were selected according to their average binding affinities and fitting score. These ligands interact with Asp435, Cys437, Ser436, Trp461, and Cys465 amino acid residues. The three best candidates and a reported drug Nafamostat mesylate (NAM) were selected to run 250 ns molecular dynamics (MD) simulations. Various properties of ligand-protein interactions obtained from MD simulation such as bonds, angle, dihedral, planarity, coulomb, and van der Waals (VdW) were used for principal component analysis (PCA) calculation. PCA discloses the evidence of the structural similarities to the corresponding complexes of L1, L2, and L6 with the complex of TMPRSS2(TM) and Nafamostat mesylate (TM-NAM). Moreover, Quantitative structure-activity relationship (QSAR) pattern recognition was generated using PCA for the investigation of structural similarities among the selected ligands. Multiple Linear Regression (MLR) model was built to predict the binding energy compared to the binding energy obtained from molecular docking. The MLR regression model reveals an accuracy of 80% for the prediction of the binding energy of ligands. ADMET analysis demonstrates that these drug agents are appeared to be safer inhibitors. These three ligands can be used as potential inhibitors against the TMPRSS2.Communicated by Ramaswamy H. Sarma

    Heterogeneous Catalysts for Conversion of Biodiesel-Waste Glycerol into High-Added-Value Chemicals

    Get PDF
    The valuable products produced from glycerol transformation have become a research route that attracted considerable benefits owing to their huge volumes in recent decades (as a result of biodiesel production as a byproduct) as well as a myriad of chemical and biological techniques for transforming glycerol into high-value compounds, such as fuel additives, biofuels, precursors and other useful chemicals, etc. Biodiesel has presented another challenge in the considerable increase in its byproduct (glycerol). This review provides a recent update on the transformation of glycerol with an exclusive focus on the various catalysts’ performance in designing reaction operation conditions. The different products observed and cataloged in this review involved hydrogen, acetol, acrolein, ethylene glycol, and propylene glycol (1,3-propanediol and 1,2-propanediol) from reforming and dehydration and hydrogenolysis reactions of glycerol conversions. The future prospects and critical challenges are finally presented

    Heterogeneous Catalysts for Conversion of Biodiesel-Waste Glycerol into High-Added-Value Chemicals

    No full text
    The valuable products produced from glycerol transformation have become a research route that attracted considerable benefits owing to their huge volumes in recent decades (as a result of biodiesel production as a byproduct) as well as a myriad of chemical and biological techniques for transforming glycerol into high-value compounds, such as fuel additives, biofuels, precursors and other useful chemicals, etc. Biodiesel has presented another challenge in the considerable increase in its byproduct (glycerol). This review provides a recent update on the transformation of glycerol with an exclusive focus on the various catalysts&rsquo; performance in designing reaction operation conditions. The different products observed and cataloged in this review involved hydrogen, acetol, acrolein, ethylene glycol, and propylene glycol (1,3-propanediol and 1,2-propanediol) from reforming and dehydration and hydrogenolysis reactions of glycerol conversions. The future prospects and critical challenges are finally presented
    corecore